Molecular dynamics simulation of solvated protein at high pressure.

نویسندگان

  • D B Kitchen
  • L H Reed
  • R M Levy
چکیده

We have completed a molecular dynamics simulation of protein (bovine pancreatic trypsin inhibitor, BPTI) in solution at high pressure (10 kbar). The structural and energetic effects of the application of high pressure to solvated protein are analyzed by comparing the results of the high-pressure simulation with a corresponding simulation at low pressure. The volume of the simulation cell containing one protein molecule plus 2943 water molecules decreases by 24.7% at high pressure. This corresponds to a compressibility for the protein solution of beta = 1.8 x 10(-2) kbar-1. The compressibility of the protein is estimated to be about one-tenth that of bulk water, while the protein hydration layer water is found to have a greater compressibility as compared to the bulk, especially for water associated with hydrophobic groups. The radius of gyration of BPTI decreases by 2% and there is a one third decrease in the protein backbone atomic fluctuations at high pressure. We have analyzed pressure effects on the hydration energy of the protein. The total hydration energy is slightly (4%) more favorable at high pressure even though the surface accessibility of the protein has decreased by a corresponding amount. Large pressure-induced changes in the structure of the hydration shell are observed. Overall, the solvation shell waters appear more ordered at high pressure; the pressure-induced ordering is greatest for nonpolar surface groups. We do not observe evidence of pressure-induced unfolding of the protein over the 100-ps duration of the high-pressure simulation. This is consistent with the results of high-pressure optical experiments on BPTI.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation

There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...

متن کامل

Gyration Radius and Energy Study at Different Temperatures for Acetylcholine Receptor Protein in Gas Phase by Monte Carlo, Molecular and Langevin Dynamics Simulations

The determination of gyration radius is a strong research for configuration of a Macromolecule. Italso reflects molecular compactness shape. In this work, to characterize the behavior of theprotein, we observe quantities such as the radius of gyration and the average energy. We studiedthe changes of these factors as a function of temperature for Acetylcholine receptor protein in gasphase with n...

متن کامل

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

Molecular Dynamics Simulation of Potassium Chloride Melting (II. Constant Volume and Constant Pressure Simulation of Filled System)

We have used a simple ionic potential to simulate the melting of KCI pseudo-infinite crystal. Two MD simulations, one with constant Volume and the other with constant pressure condition are performed. These results are compared with the previous micro-sample simulation results. In the constant volume simulation the melting temperature increase substantially with increasing pressure. A method fo...

متن کامل

Molecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin

Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 31 41  شماره 

صفحات  -

تاریخ انتشار 1992